

Regression Testing of Database Applications
1

Bassel Daou, Ramzi A. Haraty, Nash’at Mansour
Lebanese American University

P.O. Box 13-5053

Beirut, Lebanon
Email: rharaty, nmansour@lau.edu.lb

1
 Proceedings of the ACM SAC 2001 Conference, Las Vegas, USA. March 11-14, 2000.

Keywords: Regression testing, database applications, and

impact analysis.

Abstract

Database applications features such as SQL, exception

programming, integrity constraints, and table triggers pose some

difficulties for maintenance activities, especially for regression

testing that follows modifications to database applications. In

this work, we address these difficulties and propose a two-phase

regression testing methodology. In Phase 1, we explore control

flow and data flow analysis issues of database applications.

Then, we propose an impact analysis technique that is based on

dependencies that exist among the components of database

applications. This analysis leads to selecting test cases from the

initial test suite for regression testing the modified application.

In Phase 2, further reduction in the regression test cases is

performed by using reduction algorithms. We present two such

algorithms. Finally, a maintenance environment for database

applications is described. Our experience with the environment

prototype shows promising results.

1 Introduction

Regression testing is an important activity of software

maintenance, which ensures that the modified software still

satisfies its intended requirements [10]. It is an expensive

testing process that attempts to revalidate modified software and

ensure that new errors are not introduced into previously tested

code. Software revalidation involves essentially four issues:

change impact identification, test suite maintenance, test

strategy, and test case selection [7]. In database applications a

number of new features is supported such as: SQL statements,

table constraints, exception programming and table triggers.

These features introduce new difficulties that hinder regression

test selection.

SQL, the standard query language, stands as the heart of

database applications modules. The usage of SQL in a

procedural context has its implications and requirements. We

categorize these implications into three categories: control

dependencies, data flow dependencies, and component

dependencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. SAC 2001, Las Vegas,

NV. Copyright 2001 ACM 1-58113-324-3/01/02…$5.00

The nature of SQL and the existence of table constraints imply

the usage of exception handling techniques in database modules.

Exception programming complicates control flow dependencies

between statements in database modules. Moreover, table

triggers firing because of modifying SQL statements create

implicit inter-modular control flow dependencies between

modules.

The manipulation of the database tables using SQL by different

modules leads to a state-based behavior of modules. It also

creates data flow dependencies between the modules

SQL manipulates database components such as tables and

views. This fact creates component dependencies between the

various components handled by SQL statements and the module

in which the statement is located.

Regression testing algorithms and approaches have been

proposed for procedural and object-oriented programs.

Examples of these algorithms and approaches are: firewall

concept presented in [11, 12, 13], incremental slicing algorithm

proposed in [1], slicing algorithms based on data flow testing

and incremental data flow analysis described in [4, 5], class

firewall for regression testing object-oriented software

presented in [7], safe algorithm based on module dependence

graph proposed in [15, 16], semantic differencing approach

proposed in [3], and textual differencing approach proposed in.

However, to the best of our knowledge, database programs have

not been specifically dealt with in regression testing research.

In this paper, we propose a new approach to regression testing

of database applications. This approach is a 2-phase approach.

Phase 1 involves detecting modifications and performing

change impact analysis. The impact analysis technique

localizes the effects of change, identifies all the affected

components and selects a preliminary set of test cases that

traverse modified components. Phase 2 involves running a test

case reduction algorithm to further reduce the regression test

cases selected in phase 1. In this work, we present two such

algorithms. The first algorithm is a control flow based

regression testing technique that utilizes control flow

information, component dependencies, and impact analysis

results. The second algorithm is an adaptation of the firewall

regression testing technique on the inter-procedural level that

utilizes data flow dependencies.

The remainder of this paper is organized as follows. The next

section includes a discussion on the structure of database

applications and control flow issues of database modules.

Section 3 addresses the data-flow dependencies due to the

manipulation of data stored in database tables. In section 4, we

present phase 1 of our regression testing methodology. In

section 5, we present phase 2 in which we give two alternative

algorithms for the reduction of regression test cases selected in

phase 1. In section 6, we present a maintenance tool for

database applications that implement our regression testing

methodology. In section 7, we empirically investigate the

applicability of the methodology using the tool.

2 Database Applications

Database systems have been accepted as a vital part of the

information system infrastructure. Although there are different

variations of database systems implementation, we will limit our

scope to the relational database systems because relational

database systems are widely spread and the relational concepts

are standardized.

SQL remains the most accepted and implemented interface

language for relational database systems. Lately extensions to

the SQL language were introduced. These SQL extensions

were in the form of stored procedures and procedural language

constructs that allowed significant application logic to be stored

and executed in server instead of in the client. Persistent Stored

Modules was published as an international Standard in the form

of a new part to SQL-92 standard [9].

2.1 Control Flow Issues

Building control flow graphs for database modules differs

slightly from building control flow graphs for conventional

software. This difference results from the extensive usage of

exceptions and condition handlers and the nature of the SQL

language that is a key feature of database modules. Therefore,

we should devise new modeling techniques to model the control

transfers that are available in database modules.

The semantic of all SQL statements make them behave like

micro-transactions in that either they execute successfully, or

they have no effects at all on the stored data [8].

A database module consists of one compound statement in

which other compound statements are nested. Each compound

statement has its exception handler. During execution, if an

exception is raised from an SQL statement then the control is

transferred from the current statement to the exception handler

according to the type of the exception raised.

2.2 Suggested Technique

Each statement should be represented by a node in the control

flow graph. These statements are either SQL statements or

control statements or others. A compound statement contains a

list of statements with one exception handler for all of these

statements. Each of these statements is represented by a node.

The compound statement contains two end statements one for

successful endings and the other for unhandled exception

results. If exception handling is not available, then all the

exception links of these nodes will be linked to the unhandled

exception end node.

If exception handling is available then the exception handler is

modeled by a primary handler switch node to which all the

exception links of the compound statement nodes are linked.

Each specific exception handler is modeled by a predicate node

that checks for the type of the exception. The exception

predicate has two links: the first one is to the start node of the

exception handler block and the second to the next handled

exception.

3 Data Flow Analysis

Data flow analysis focuses on the occurrences of variables

within the program. Each variable occurrence is classified as

either definition occurrence or as use occurrence [14].

3.1 Data Flow Issues

The database plays an important role in holding the state of

computation in database modules. The data generated by a

statement is used by other statements in the same module or

other modules; thus creating data flow relations. The main

source of data in a relational database is tables.

To define the data flow relations created from the database

usage we should decide on a level of granularity of the database

variables in which we can trace their definition and their later

use.

3.2. Suggestion and Solutions

One choice of the level of granularity is the column level. Since

the number of columns is fixed and columns are used in SQL

statements using their unique names, we can determine the

column usage statically. A drawback of this choice is the fact

that it does not discriminate between the usage of one particular

column value belonging to some row and the usage of the same

column but of a different row.

SQL statements use columns directly and indirectly or, in other

words, explicitly and implicitly. These usages are either

definition or retrieval. A table participating in master detail

relations has a group of its columns referencing the primary key

columns of the master table. Whenever these columns are

defined the database implicitly checks that the master table

contains a record that has its primary key column values

matching the foreign key column values of the newly added

record. So, whenever a new record is created the primary key

columns of the master table are used.

We differentiate between five main usages of database columns.

They are delete, insert, reference, select, and update. Reference

and select usages are computational usages denoted by c-use.

Update, delete and insert usages are define uses denoted d-use.

4 Impact Analysis

Software impact analysis estimates what will be affected in

software or related documentation if a proposed software

change is made [2].

In this section, we present phase 1 of our regression testing

methodology that includes modification detection and impact

analysis. In this phase we localize the effects of change,

identify all affected components, and select a preliminary set of

test cases that traverse modified components.

4.1 Change Identification

Change identification is the first step in change impact analysis.

We differentiate between two types of changes in the database

applications environment:

1- Code Change: This involves changes that can be made to

the code of the database modules

2- Database Component Change: This change involves the

changes that could be made to the definition of the

database components in general.

4.2 Change Impact Identification

A change made to one component affects other database

components due to component dependencies. Therefore, to

identify the impact of change, we should identify the

dependencies that exist between database application

components and then find the wave effect of change due to the

transitivity of the dependency relations. The Component

Firewall technique presented in this section is used to determine

all the affected database components. .

A component firewall is a set of affected modules when some

changes are made to any of the database components. A

database component is marked as modified and is included in

the component firewall if one of the following conditions is

satisfied:

1- Its definition is modified.

2- It is deleted.

3- It is dependent on a modified or deleted component.

4- It became dependent on new or modified components in

the new system such as triggers and constraints.

All database components selected by the Component Firewall

Algorithm are marked as affected components. Affected

module components are classified alone so that we can select a

test case passing through them to become a part of the results

acquired in phase 1 of our regression testing methodology.

In Figure 1, we sketch an outline of the component firewall

building algorithm. This algorithm takes the old and new

schemas and returns a list of components that constructs the

component firewall.

Component_Firewall(old_schema, new_schema)

Denote by L the list of components in the firewall

Denote by ML the list of modified and deleted components

Denote by NL the list of new components

Compare(old_shema, new_schema, ML, NL)

For each modified component C in ML
 Add C to L

 For each component X dependent on C in new_schema

 If X belongs to Old_shema then
 Add X to L

For each new component C in NL

 For each dependent component X on C in new_schema
 If X belongs to Old_shema then

 Add X to L

L := Transitive_Closure(L, Old_schema)
Return L

Figure 1 The Component Firewall Algorithm.

Module Compare is responsible for performing change

identification. It takes the old and new database schemas and

returns two lists of components: one for the modified and

deleted components and the other for the newly added ones.

Module Transitive_closure takes a list of components and the

database schema and returns the transitive closure of the

dependent components.

5 Test Case Reduction

The test cases passing the modules that are included in the

firewall are selected for regression testing. However, this will

result in a large number of test cases. The component firewall

does not give us hints to discriminate between the test cases

passing through a module included in the firewall.

Therefore, we have to think of new techniques to reduce the

number of test cases selected in phase 1. In this section, we will

discuss two such techniques. We call the first technique a

Graph Walk technique. The second technique is call graph

firewall. It is an adaptation of the firewall regression testing

technique proposed by Leung and White [11, 12].

5.1 Graph Walk Technique

In this technique, we use control flow graphs of all modules in

the application and its modified version, and trace-information

linked to control flow nodes. We also utilize the dependency

created between statements and various database components

To perform the technique on a certain module the technique

traverses the control flow of the module and its modified

version. When a pair of nodes N and N* in the graphs of the

original module and its modified version are respectively

discovered, such that the statements associated with N and N*

are different, the technique selects all tests from the test suite

that reached N in the original program. For two node N and N*

to be different, at least one of these conditions should be

satisfied.

1- N and N* are lexically different,

2- N uses a modified component,

3- N uses a component that is not used by N*, or

4- N* uses a component that is not used by N.

To extend the technique to the inter-module level, we should

change condition two to become: N uses a modified non-module

component. Moreover, for each module call linked to a control

flow graph node N we should perform the graph walk algorithm

recursively on this module and intersect the result with the test

cases passing through node N.

5.2 Call Graph Firewall

Leung and White [11] present a selective retest technique aimed

specifically at inter-procedural regression testing that deals with

both code and specification changes. Their technique

determines where to place a firewall around modified code

modules. Where test selection from regression test suite is

concerned, the technique selects unit tests for modified modules

that lie within the firewall, and integration tests for groups of

interfacing modules that lie within the firewall. Leung and

White [11] extend their technique to handle interactions

involving global variables.

Implementing the firewall concepts for database applications

has three requirements:

1- Database application call graph.

2- Data flow dependencies between interfacing modules

resulting from database tables usages.

3- List of

modified

database

modules.

The call graph links a

database module to all

the modules that it

calls. It should

include links to table

triggers modules in

case the module

contains statements

that causes these

triggers to execute.

6 Support System

We have implemented a database applications maintenance tool

as a support system for this research. The objective of our

support system is to prove the applicability of the concepts

presented. The developed system helps database application

maintainers understand these applications, identify code

changes, support software updates, enhance, and detect change

effects. It mainly helps create a test environment and select

regression test cases to be rerun when a change is made to the

application using our 2-phase regression testing methodology.

The system is made for ORACLE database applications

programmed using PL/SQL language. Our maintenance tool is

composed of five parts: module analysis, database analysis, test

environment setup, impact analysis and regression test selection,

and test case reduction.

7 Empirical Results

To empirically investigate the use of our regression testing

methodology, we have performed a study on a prototype of a

payroll database application

7.1 Experimental Design

We use a prototype of payroll database application with a

number of test cases used to test its various modules and

constructs. We propose a random number of modifications to

the application. Then, we study each modification alone using

our maintenance tool and report the affected modules and the

test cases that should be rerun according to the regression

testing techniques implemented in the tool. The test suite used

to test this application contains fifty test cases selected using a

specification based test adequacy criterion.

7.2 Summary of Results

In Table 1, we present a summary of the cases presented in

section 7.3. We classify these results into two parts. In the first

part, we give the results of phase one of our regression testing

methodology. In the second part, we give the results of the

phase two.

Phase 1 results include a count of the following:

1- Directly affected modules.

2- Indirectly affected modules.

3- Test cases traversing affected modules.

Phase 2 results include a count of the following:

1- Test cases selected by the GraphWalk technique.

2- Test cases selected by the Call Graph Firewall

technique.

Table 1 Summary of Results. (Total test cases = 50)

Modification Cases

Phase 1 Phase 2

Directly

Affected

Modules

Indirectly

Affected

Modules

Selected

Tests

Selected Tests

Graph

Walk

Call

Graph

Firewall

1- Delete trigger 5 2 18 18 11

2- Modify function 2 2 14 14 13

3- Drop constraint 1 0 4 4 4

4- Drop constraint 1 0 4 4 4

5- Drop constraint 1 2 14 14 7

6- Add constraint 1 2 14 14 7

7- Add trigger 3 0 4 4 4

8- Change column type 1 4 14 12 12

9- Modify function code 1 3 14 5 5

10- Modify function code 1 3 14 2 5

7.3 Discussion of Results

In phase 1 of our regression testing methodology, impact

analysis does a good deal of the test selection job. It selects the

test cases that traverse affected modules. Out of the 50 test

cases used to test the application we have 18 test cases selected

at most, which is a 36% ratio (refer to Table 1). The best case is

4 test cases out of 50, which is 8%. On average 11.4 test cases

are selected, which is 22.4%. This ratio depends on the number

of affected modules per modification and the distribution of test

cases within the modules. The number of affected modules per

modification depends on the level of interaction between the

modules and the various database components. On the other

hand, the distribution of test cases within the modules depends

on the testing criteria used to initially test the application.

In phase 2, we have two alternative techniques to reduce the

number of regression test cases selected in phase 1. The

GraphWalk algorithm works on the statement level and can be

extended to the procedural level. In seven modification cases,

the reduction has not been effective (refer to table 7.1).

However, in the remaining three modification cases the

reduction has been more evident. We account this behavior to

modification types and to modules structure. With non-module

component modifications, the number of affected modules and

statements is usually high. This results in the selection of a high

number of regression test cases. On the other hand, when few

statements are affected within the control flow branches of a

module, the GraphWalk selects the test cases traversing these

branches only and eliminates the other test cases. Therefore,

with code modification like the case of modifications 9 and 10

the reduction of test cases will be more evident specially if the

affected code lies deep in the branching structure of the module.

The second alternative technique for reduction of regression test

cases in the second phase of our regression test methodology is

the Call Graph Firewall technique. The test cases selected by

the firewall regression testing technique are composed of two

types of tests: unit tests and integration tests. Unit tests are tests

used to test only the directly affected modules. Integration tests

are test cases passing to the directly affected modules from

higher modules in the call graph. These test cases are selected

when there are data flow interactions between modules in the

call graph. In six modification cases, the Call Graph Firewall

algorithm has been able to reduce the number of selected test

cases. In these cases, the ratio of the indirectly affected

modules to those directly affected is relatively high. The

number of indirectly affected modules is higher when the

affected modules lie deep in the hierarchy of the call graph.

With modular applications having a hierarchical structure there

is more probability that the modified modules would lie within

the hierarchy. Therefore, the Call Graph Firewall technique is

effective with modular applications.

8 Conclusion and Further Work

We presented a two-phase regression testing methodology for

database applications. In phase 1, we suggested a technique for

modification detection and modification impact analysis in

which we determined affected modules and test cases traversing

them. In phase 2, we presented two alternative techniques for

the reduction of the regression test cases selected in phase 1. In

the first technique, we presented a statement based regression

testing algorithm, the graph walk algorithm, that extends to the

inter-procedural level. In the second technique, we adapted the

firewall algorithm to database applications. In addition, we

developed a support system and used it for the experimental

work.

References

[1] Agrawal, H., Horgan, J.R., Krauser, E.W., 1993.

Incremental Regression Testing. Proceeding of

International Conference on Software Maintenance,

348-357.

[2] Arnold, R. S., and Bohner, S. A. 1996. Software

Change Impact Analysis. IEEE press.

[3] Binkley, D., 1997. Semantics Guided Regression Test

Cost Reduction. IEEE Transactions on Software

Engineering, 23(8), 498-516.

[4] Gupta, R., Harrold, M.J., Soffa, M.L., 1996. Program

Slicing-Based Regression Testing Techniques.

Software Testing, Verification and Reliability, 6(2),

83-111.

[5] Harrold, M.J., Soffa, M.L., 1988. An Incremental

Approach to Unit Testing during Maintenance.

Proceeding of International Conference on Software

Maintenance, 362-367.

[6] Hartmann, J., and Robson, D.J. 1989. Revalidation

during the Software Maintenance Phase. Proceeding

of International Conference on Software

Maintenance, 70-79.

[7] Hsia P., Li X., Kung D.C., Hsu C-T, Li L.,

Toyoshima Y., and Chen C. 1997. A Technique for

the Selective Revalidation of OO Software. Software

Maintenance: Research and Practice, Vol. 9, 1997,

217-233.

[8] ISO/IEC 9075: 1992. Information Technology –

Database Languages – SQL.

[9] ISO/IEC 9075-4: 1995. Information Technology –

Database Language – SQL Part 4: Persistent Stored

Modules (SQL/PSM).

[10] Kung D.C., Gao J., Hsia P., Wen F., Toyoshima Y.,

and Chen C. 1995.Class firewall, test order, and

regression testing of object-oriented programs.

Journal of. Object-oriented Programming, 8(2), pp.

51-56.

[11] Leung, H.K.N., and White, L. 1990a. A Study of

Integration Testing and Software Regression at the

Integration Level. Proceeding of International

Conference on Software Maintenance, 290-300.

[12] Leung, H.K.N., and White, L. 1990b. Insights into

Testing and Regression Testing Global Variables.

Software Maintenance: Research and Experience,

Vol. 2, 209-221.

[13] Leung, H.K.N., White, L., 1992. A Firewall Concept

for both Control-Flow and Data-Flow in Regression

Integration Testing. Proceeding of International

Conference on Software Maintenance, 262-271.

[14] Rapps S., and Weyuker E. J. 1985. Selecting

Software Test Data Using Data Flow Information.

IEEE Transactions on Software Engineering, 24(6),

June, 401-419.

[15] Rothermel, G., Harrold, M.J., 1997. A Safe, Efficient

Regression Test Selection Technique. ACM

Transactions on Software Engineering and

Methodology, 6(2), 173-210.

